

ELECTRONIC AND INFORMATION ENGINEERING CORSO DI LAUREA IN INGEGNERIA ELETTRONICA E DELL'INFORMAZIONE BACHELOR IN ELEKTRO- UND INFORMATIONSTECHNIK

Contenuto degli insegnamenti Inhalt der Lehrveranstaltungen

Coorti dal 2025/2026 Kohorten ab 2025/2026

Primo anno / Erstes Jahr
Mathematical Analysis I (I year, I semester, 9 CFU)
 Introduction to real and complex numbers.
 Basic notions on real functions of one real variable.
Real sequences and numerical series.
Limits and continuity of functions.
 Infinite and infinitesimal functions: Landau symbols and rate of convergence.
 Differential calculus and its applications.
 Local comparison and Taylor expansions.
 Antiderivatives and integral calculus for functions of one real variable.
Definite and improper Riemann integrals.
Mathematical Analysis II (I year, II semester, 9 CFU)
 Real functions of several real variables, partial derivatives and differentiability.
 Taylor's theorem for several variable functions, free and constrained maxima and minima.
 Curves and vector fields, gradient, divergence, rotor; conservativity of vector fields.
Curvilinear integrals of scalar functions.
Curvilinear integrals of vector fields.
Double integrals.
Triple integrals.
 Mention of surface integrals, and Gauss, Green, and Stokes theorems
Elements of ordinary differential equations.
Linear Algebra (I year, I semester, 6 CFU)
Vector spaces.
Geometry of space.
Matrices and their operations.
Linear systems.
Determinant and rank.
Linear transformations.
Fundamentals of Programming (I year, I semester, 11 CFU)
1. Module 1: Fundamentals of Programming (I year, I semester, 6 CFU)
 Introduction to hardware and software, with computer organisation; data hierarchy; machine
languages, assembly languages, high-level programming languages.
 Introduction to different programming paradigms, focusing on the structured programming paradigm.
 Introduction to Python: interactive mode, script mode, Jupyter. Structured programming: basic data types, variables, constants, operators and expressions; standard input/output handling;

	control flow structures; file and error handling.
•	Basic data structures/types of Python: (1) lists, (2) dictionaries, (3) tuples, (4) sets.
•	Subroutines and functions in Python (with/without parameters; with/without return); functions and
	basic recursion in Python, e.g., some combinatorics.
	Basics of computational thinking to solve a computational problem and program a resolution in
	Python and Python-based languages, via physical-computing boards.
2 M	lodule 2: Fundamentals of Programming II (I year, II semester, 5 CFU)
2. 14	Introduction to C programming and toolchain.
•	
•	C language: syntax and data types.
•	C memory management and activation record.
•	C programming techniques.
•	Debugging and software testing (debugging tools; writing safe and secure programs; type
	checking).
Physi	ics I (I year, II semester, 7 CFU)
•	Measurement and vectors: units of measurement, dimensions of physical quantities, mathematical
	operations with vectors.
•	Kinematics: average and instantaneous velocity and acceleration, uniformly accelerated motion.
•	Dynamics I: Newton's three axioms, work, energy, conservation of energy.
•	Dynamics II: linear momentum, collisions, centre of mass.
•	Rotation: angular displacement, mean and instantaneous angular velocity and acceleration, torque,
	moment of inertia, angular momentum.
•	Thermal phenomena: thermal expansion, kinetic theory of gases, heat, ideal gases.
•	Thermodynamics: Zeroth, first and second law, notable thermodynamic cycles, entropy.
Ubia	uitous Sensing and Computing (I year, II semester, 9 CFU)
	ile 1: Ubiquitous Computing (I year, II semester, 6 CFU)
Modu	
•	Principles about Sensing & Perception.
•	Methodology & Prototyping (Rapid Prototyping with ProtoPie).
•	Arduino Output (with a strong focus on programming, digital, analog, PWM, ADC) and Arduino
	Input: Switches, Debouncing, Playing with sensors.
•	AdvancedIO: FSR, stretch sensors, sensitivity, offset, accuracy, dynamic range, linearity and
	noise, filtering the signals (moving mean filter, EMA, WEMA etc.). Arduino Motors: ERM/LRA,
	Interrupts, Memory Handling.
•	Serial Communication (Sensors to Microcontroller, Microcontrollers to Computer, etc.), i2C, Series
	Peripheral Interface (SPI). Prototyping with Unity. OSC communication.
•	Combining Unity & Arduino using OSC. Technology Trends.
Moau	ile 2: Ubiquitous Sensing (I year, II semester, 3 CFU)
•	Introduction to sensors and measurement principles: understanding what sensors are, how they
	work, and their role in converting physical phenomena (e.g., temperature, light, force) into
	electrical signals.
•	Types of sensors and their applications: exploring different sensor types (e.g., temperature,
	humidity, light, and magnetic field sensors), their working principles, and common real-world uses.
•	Practical implementation of sensor systems.
Economi	cs and Management (I year, I semester, 6 CFU)
•	The company: objectives and context (basic concepts; classifications of companies; value chain;
	vision and mission; Porter's generic strategies; strategy tools).
•	Essentials of financial accounting (accounting principles; balance sheet and income statement;
	financial statement preparation; ratio analysis).
•	Investment analysis (actualization and capitalization; discounted payback period; net present
•	value; internal rate of return).
•	Other economic evaluation analyses (classification of costs; break-even point; make or buy
•	
	choices).
Enocia	lized Language (I year, II semester, 3 CFU)
Specia	Ilized Italian (I year, II semester, 3 CFU)
•	Present Subjunctive forms and uses.
•	Subjunctive Pasts: forms and uses

- Language for specific purposes vocabulary and syntax
- Discursive markers.

Specialized English (I year, II semester, 3 CFU)

- Writing academic emails: formal language/making polite requests/format & language of formal emails.
- Writing academic reports: formal language/discourse markers/structure & organization.
- Making academic presentations on a discipline-specific topic.
- Discipline-specific vocabulary: word formation & collocations.
- Paragraph writing: topic sentences, discourse markers & other organisational features.

Specialized German (I year, II semester, 3 CFU)

- Technical language: terminology, morphology, syntax, text structure.
- Informal and formal e-mails within the academic sector.
- Application and cover letter.
- Graphics on specific technical topics.
- Reports/ presentations on discipline-specific topics.

Secondo anno / Zweites Jahr	
Physics 2 (II year, I semester, 7 CFU)	
	ulomb law; electric field; electric potential.
Electrostatics II: Electric energy sto	
	sistance; Joule's effect; power; direct/alternating current;
electric circuits; Kirchhoff's laws.	searce, source energy porter, an eegaternating carrent,
	lds; magnetic induction; Lorentz's forces; Ampère's law;
magnetic dipoles; magnetic energy	
Electromagnetic induction and Fara	
	equations; light propagation; polarization of electromagnetic
waves.	equations, light propagation, polarization of electromagnetic
 Optics: reflection, refraction, interf 	erence diffraction. Thin lenses
Basics of Electronics (II year, I semes	
	ring: electrical quantities, concept of bipoles and quadripoles;
ideal and real generators; Kirchhof	
	pipoles: resistive bipoles and Ohm's law; Thevenin's and
• •	analysis and circuit simplification; superposition principle.
	onse: introduction to dynamic bipoles; first and second order
circuits; transient response and tin	
	position in AC circuits; multi-frequency circuits and signal
	rton's models in AC; nodal analysis in sinusoidal regimes.
	aneous and average power calculations; root mean square
(RMS) values, complex power and	
	s: biports and their characteristics; connection methods and
	iport circuits in both dynamic and sinusoidal regimes.
 Operational amplifiers: principles a 	nd working of op-amps; circuit configurations and feedback
mechanism; analysis of op-amp cir	cuits in dynamic and sinusoidal conditions.
 Frequency response and filters: tra 	nsfer function and system behaviour; Decibel scale and Bode
diagrams; design and analysis of fi	lters.
Circuit simulation with SPICE: intro	duction to SPICE as a simulation tool; modelling and analysis
of electrical components; practical	
Data Structures and Algorithm (II year	, I semester, 6 CFU)
 Searching and sorting. 	-
 Analysis of algorithms: correctness 	and complexity.
Divide and conquer, recurrences	
Pointers, dynamic data structures,	linked lists
Elementary graph and tree algorith	
 Abstract data types: stacks, queue 	
Operating Systems and Networking (II	voor II comostor 6 (EII)
Operating Systems and Networking (II Operating Systems Structures	year, II semester, U CFUj
	04
Processes, Threads and Concurren CPU Scheduling and Synchronization	
CPU Scheduling and Synchronization	<i>И</i> 1
Memory and Mass-Storage	
 I/O, File Systems 	

Networks and Distributed Systems •

Ela	ctronic Materials and Devices (II year, 14 CFU)
1.	Module 1: Introduction to Quantum Electronics (II year, I semester, 5 CFU)
	Failure of classical mechanics: Black Body Radiation, Photoelectric and Compton effects.
	Early quantum theory: Wave nature of matter, Bohr atom, De Broglie hypothesis, early models
	of the atom.
	Quantum Mechanics: wavefunction, Heisenberg Uncertainty Principle, 1D Schroedinger
	equation (particle in a box and tunnelling). Quantization of the angular momentum.
	Quantum mechanics of the atom. Pauli Exclusion Principle.
	Bloch Theorem. Model of Kronig and Penney.
2.	Module 2: Electronic Devices (II year, II semester, 9 CFU)
	Semiconducting materials.
	Electronic properties of solids.
	Semiconductor fabrication and characterization techniques.
	 PN junctions and diodes.
	-
	Transistors (Bipolar, FET)
	Memories (DRAM; SRAM; Flash; resistive).
	 Photonic devices (LEDs; lasers; photodiodes; solar cells).
	Other electronic devices.
	Practical exercises and laboratory work.
Eu	ndamentals of Systems and Control (II year, 12 CFU)
1.	Module 1: Systems & Control (II year, II semester, 6 CFU)
	Dynamic system modelling in frequency domain.
	Dynamic system response.
	Stability of linear control systems.
	 Root-locus analysis and design methods.
	Frequency-response analysis and design methods.
	Digital control systems (time permitting)
2	Module 2: Systems & Control Lab (II year, II semester, 6 CFU)
2.	 Introduction to Matlab.
	Introduction to Simulink.
	Matlab's toolboxes for control.
	 Simulation of dynamical systems in the frequency domain with the Control System Toolbox.
	 Computer-aided analysis and design in Matlab/Simulink.
	 Real experiments of control in the lab.
Dro	bably Theory and Statistics (II year, I semester, 6 CFU)
	 Basic concepts: probability spaces, conditional probability, Bayes' Theorem, independent
	events.
	Random variables: distribution, density, expectation, variance, covariance, law of large
	numbers.
	• Special distributions: Bernoulli, Binomial, Poisson, Exponential, Normal, Chi-Square, t-
	Distribution.
	 Sampling: sums of random variables, central limit theorem, sample variance.
	 Parameter Estimation: maximum likelihood estimates, interval estimates, confidence intervals.
	Hypothesis testing: significance levels, test statistics, p-values.
k	

	n Control (III year, II semester, 9 CFU)
•	Modelling and system analysis in state space (dynamic system modelling in time domain and
	state-space representation).
•	Dynamic system response derived from state-space representation and steady-state error.
•	Stability in state space.
•	Control design in state space (Pole placement design techniques; controllability, observability, full-state observers).
•	Optimal control of dynamic systems (Problems with fixed and variable endpoints as well as with equality and inequality constraints; maximum principle and Hamilton-Jacobi-Bellmann equation; linear quadratic regulator).
•	Understanding of observers in control systems.
•	Understanding of optimal state observers and Kalman filters.
•	Computer-aided analysis and design using Matlab/Simulink.
•	Implementation of controllers and experimental evaluation on real-hardware setups
	onic Circuits and Systems (III year, 12 CFU)
	odule 1: Analog Electronics (III year, I semester, 6 CFU)
•	Diodes: diode models and circuits, rectifier circuits, diode-based voltage regulators, limiting an clamping circuits.
•	Op Amps: advanced configuration of amplifiers, instrumentation amplifier, integrator an differentiator, op-amp non-idealities. The effect of positive feedback: oscillator circuits.
•	MOSFET and BJT models: physical structure, I-V model, C-V model, parasitic capacitances ar resistances, small-signal models, p-channel MOSFET, pnp BJT.
•	Transistor amplifiers: basic principles, basic configurations, biasing networks, discrete-circuit ar IC amplifiers. Differential amplifiers and the differential pair.
•	Frequency response: low- and high-frequency responses, approximate analysis methodologies high-frequency response of MOSFET amplifiers.
•	Introduction to digital logic circuits: CMOS logic circuit topologies, dynamic operation, and power dissipation.
2 M	odule 2: Digital Circuits and Systems (III year, II semester, 6 CFU)
•	Combinational logic and sequential logic, mealy and Moore finite state machine, programmable logic electronics (taxonomy; PAL, PLC; FPGA: introduction, interconnection resources, I/O
	reconfigurable blocks, programming; design flow; principles of design, Verilog, system Verilog and VHDL).
•	Power supply generation and distribution: switching mode power supplies and linear regulators, heat management, battery management.
•	Analog meets digital: analog to digital conversion, digital to analog conversion. Interference between analog and digital.
•	Microcontroller units: architecture, peripherals, bus signal distribution; crosstalk, glitch, debounce. Clock generation and distribution. signals and bus signal distribution, clock
•	generation and distribution. System on chip, system in package, system on module concept and applications. Input and
•	output devices and interfaces (i2C, SPI, USB3, ETH). Laboratory experience programming embedded electronics on MCUs.
	ntrol (III year, I semester, 6 CFU)
	Robot kinematics and dynamics.
•	Trajectory planning.
•	Motion control.
•	Interaction control.
•	Vision-based control.
•	Remote control.

Computer Architecture (III year, I semester, 6 CFU)

- Binary arithmetic (two's complement, IEEE 754 floating point format, issues with floating-point computations)
- General computer architecture (Von Neumann architecture; CPUs; bus; memory; peripherals)
- Instruction set architecture (CISC vs RISC architecture; instructions: data-movement, controlflow, arithmetic/logic; common ISAs: introduction to x86, ARM, RISC-V; assembly programming).
- CPU architecture (control unit, registers, ALU; fetch-decode-execute cycle; pipelining; superscalar architecture; branch prediction; out-of-order execution; caches).
- Memory and buses (static vs dynamic memory; serial/parallel buses; synchronous/asynchronous buses; bus arbitration strategies; example of buses: PCI, PCI-Express, USB).
- Other topics (multi-processor and multi-core architectures; introduction to GPUs).

Machine Learning (III year, I semester, 6 CFU)

- Data analysis.
- Model selection.
- Supervised learning.
- Unsupervised learning.
- Reinforcement learning.
- Elements of deep learning.